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ABSTRACT

A generalized critical point is
characterized by totally non-linear
dynamics. sWe—formulate the determin- x
istic and stochastic theory of relaxation s “evsn.l e
at such a point. Canonical problems are
used to motivate the general solutions.
In the deterministic theory, we—shoew—that- —
at the critical point certain modes have
polynomial (rather than exponential)
growth or decay. The stochastic relaxa-
tion rates can be calculated in terms of
various incomplete special functions.
Three examples are considered. First,
a substrate inhibited reaction (marginal
type dynamical system). Second, the
relaxation of a mean field ferromagnet.

in 3 result, that generalizes the

work of Griffiths et al. Third, we con=,

b»"siéer the relaxation of a critical

harmonic oscillator2vs consy deved,
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SECTION 1

INTRODUCTION: "“CRITICAL SLOWING DOWN"

Thermodynamic and kinetic generalized critical points are
characterized by totally non-linear dynamics. Such non-linear
2 dynamics lead to many interesting phenomena, e.g., "anomalous"
fluctuations (treated in (1)) and the "slowing" down of the decay
of a perturbation. To illustrate the latter effect, consider

the kinetic equation:

; = b(x, a) x€,Rl wCij (1.1)

for which the origin is assumed to be a steady state: b(0, a) = 0.
Suppose that the system is perturbed to a value x = Xq . A well
defined problem is to calculate the time that the system takes to

reach &6(0 < §8<«< xo) from Xq. EE X% is "small," then a

0
natural approach involves approximating (1.1) by

e

£ n b0, Ox & ole) %(0) = % (1.2)

0"
r Now we assume that b'(0, a) < 0 , so thatthe perturbation decays.

The time that the system takes to reach x = § is easily calculated

; to be

S 1 _S
ts = ETTBT—ETQW[XO] (1.3)




However, suppose that for some critical value of a = aLe
b' (0, ac) = 0. Then (O, ac) is a "generalized critical" point:
the dynamics at o = a, are totally non-linear. Equation (1.3)
. yields the physically ridiculous result t<S = ® , Furthermore,
(1.2) becomes ; = 0. Both of these difficulties are due to im-
. proper linearization procedures, and not any physical divergences.
In fact, the decay of the perturbation is algebraic in time, with
the exact form determined by the nature of the singularity at (0, ac).
Such simple problems and the canonical bifurcations are considered

in section 2. The points essential to the understanding of critical

relaxation phenomena can be gained by study of one-dimensional

systems.

If fluctuations are not included, a steady state can not be
attained in finite time. Since the deterministic forces vanish as
a steady state or equilibrium is approached, the ratio of fluctuation
intensity to deterministic dynamics grows. Thus, the proper theory
of relaxation must be a stochastic one. The deterministic kinetic

equation is modified by a Langevin approach. We use the diffusion

approximation to treat the stochastic kinetic equation. In particu-
lar, we derive a diffusion equation for T(x'lx), the expected time
to reach x', starting at x and conditioned on the fact that the
process reaches x'. We analyze the one-dimensional equations fully
and obtain certain special functions, which are genearlized in

section 4 to the solution of multi-dimensional problems. In sections
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5-7, we consider three applications of the theory. 1In section 5,
relaxation from a steady state of marginal stability in a substrate
inhibited reaction is considered. 1In section 6, we consider relaxa-

tion of a mean field ferromagnet. Our results complement and extend

the results of Griffiths et al (2). Finally, in section 7, we

discuss relaxation phenomena in the critical harmonic oscillator

(L, 3%,
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SECTION 2

DETERMINISTIC THEORY OF RELAXATION AT CRITICAL POINTS

In this section, we give the deterministic theory of relaxa-

tion. Our classification scheme extends the ideas of Kubo et al (4)

to multi-dimensional systems (section 2.2). 1In section 2.1, we

stress the one-dimensional results, because the multi-dimensional

theory is a natural extension of the one-dimensional results.

2.1 ONE-DIMENSIONAL SYSTEMS

We consider a kinetic equation

x = blx, a;) x(0) = x, X&' aer”.

The origin is assumed to be a steady state of (2.1).

A. Normal Type

The steady state is of the normal type if b' (0, o) # 0.

It

is stable if b'(0, a) < 0 and unstable if b'(0, a) > 0. In the

vicinity of the origin, (2.1) can be replaced by

X = b'(0, a) x x(0) = X0

As mentioned in the introduction, the time that the system takes

to reach x = §, starting at x = *0 is

1 "o]
o, T e ool Zn[ .
$ [b (0, a)] &

{2.1)

(2.2)

(2.3)
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B. Marginal Type

The steady state is of the marginal type if aeRl and for

a value o = a, we have

b{0, a,) = b0, a ) = 0, b (0, al) # 0 (2.4)

There exists a local change of coordinates (e.g., (5),(6), or

Appendix A here) so that for « near o _ , X near the origin

c
equation (2.1) becomes

5 2

Yy =y = g@la) . y(0) = yo(xo) (2.5)
In (2.5), PBl(a) 1is a regular function of o and B(ac) = 0. We

call ¢ = O the marginal bifurcation point. The flow of (2.5) is
sketched in figure 1. The bifurcation picture is shown in rigure
2. The marginal case was considered briefly by Kubo et al (4)

and Nitzan et al (7).

Now suppose that B8 > 0 and -/B < Yo < YB . One can

calculate the time that it takes to reach Y1 =-vB + §. We obtain

yl-/g YO-/g-
i

y; + /B Yo * VB
For small we have

y, - /8 1 - /By
L = 1 = - Eyp?e s
Y1+/§— 1+/-B-/Yl' :

£ -
Y 2/F
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(a) MARGINAL TYPE;
(b) CRITICAL TYPE;
(c) HOPF TYPE

7

b S A s s D, S § o0k R o PN S 1 e B




a«;%g. o 0 g B A 0 D DS 3 30 A SR T . . . — A— BT ——

é

3.4feady ekt

7a

2:

1&&,»»1‘.&-)9»4&12
1:1 232,22 )20
7777777 77777
0
(e)
(Continued)

FIG.

A shuady slile

i o F oo s . g P T T—— e




Expanding the logarithms in (2.6) gives

+ 0(B)

so that ty remains finite as g-0. Clearly, this result would
1
not be obtained had we used the linearized version of (2.5):

y = -=2/B (y + VB)

In another possible situation $=0.Suppose that ¥o  * 0.

The time to reach 6§ < 0 from Yo (y0 < §) is (exactly)

1 1!
S A = - — + aass
§ Yo
The point of importance is that (2.8, 2.9) yield algebraic forms
for the relaxation time, whereas (2.3) yields a logarithmic time

(i.e., alagebraic versus exponential relaxation).

€. Critical Type

A steady state is of the critical type if aGR2 and for

b (0, ac) = b'(O, ac) SR o g 0 s S e S o

b (0, ac) # 0

(2.8)

(2.9)

{2.10)

(2411)

i
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The canonical form of the dynamics, for o near o, and vy

" near 0 is (for b < 0)
y = -y +8Ya)y + 82(a)
(2.12)
% y(0) = yo(xo)
5 In (2.12), B(a) 1is a regular function of o and B(ac) = 0.

We call o = a, the critical bifurcation point. The flow of (2.12) is
sketched in figure 1. The bifurcation picture is shown in figure

2. When q = Oy We have

y = -y (223}

so that the origin is very weakly attracting. The time that the

system takes to reach y =6 from y = Yy, > 6 is

5 B B 1
. SRSy e o S —7] (2.14)
Yq S

As in the marginal case, we obtain an algebraic, rather than

exponential, decay rate.

D. Hopf Type

i A steady state is of the Hopf type if aERl and when a = «

Bi0, o) =b (0, 6.} =5 10, 6.) =0
» Fol Y v (2.15)
> S s 10 ac) #0
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The canonical dynamics (8) in this case (for b''' < 0) are
% 2
y = ~y{y" - gla))

where B8 = B(a) is a regular function of «a and B(ac) = 0. The

(2.16)

flow of (2.16) is sketched in figure 1. The bifurcation picture is

sketched in figure 2. It is important to note the difference be-

-~

tween Hopf and critical cases (i.e. the number of parameters).

MULTI-DIMENSIONAL THEORY: CANONICAL FORMS

We now consider

x = b(x, a) x € R® a(:Rl or R2 {2.17)
with the origin a steady state. We let Al' s An denote the
eigenvalues of the matrix B = (bl,j) . For simplicity, we assume

0
assume that there are n distinct eigenvalues and eigenvectors.

Let k, ., k_, ky denote the number of eigenvalues with real part
positive, negative, and zero, respectively. The dynamical systems

are classified as follows.

A. Normal Case

Hence k., = 0 . It is well known that (2.17) can be replaced

0
by a change of variables x-»y so that

y' o= gyt 0 (y?2) y'(0) = yh(xg) (2.18)
4 k; = 0, then the origin is stable. If k+ > @, then R" can
10
B TS ——




be divided into two sub-spaces: an expanding part (We), and a

contracting part (Wc) (figure 3), with dim We + dim Wc = .

5 B. Merginal Case

We now let aeRl vary. Then the eigenvalues of B are
- functions of «: Ak - Ak(a). When o = a, Wwe assume that,
1) All eigenvalues are real. Exactly one eigenvalue

A and

Ao(ac) = 0. There are k negative eigenvalues, 2\ x

l’ o e oy

n - 1-k positive eigenvalues A A

) % B i L

2) There are enough eigenvectors. Let Z denote the

eigenvector corresponding to AO. Then from (2.17), we obtain,
Z = bl(y(2), a) (2.19)

The marginal type steady state is characterized by

~

b (0, ac) = bZ(O, ac) = 0

~ (2.20)
bZZ(O,ac) # 0

In appendix A, we show that (2.17) can be put into the form

Aiyl % 0(yZ) y1€Rn—l

e
Il

i - : (2.21)
v = 9%+ sl yOer?

+ 0(y>)




FIG.
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MULTI-DIMENSIONAL PHASE SPACES.

(a)
(b)

(b)

NORMAL TYPE

MARGINAL TYPE: DOUBLE ARROWS INDICATE EXPONENTIAL
GROWTH/DECAY; SINGLE ARROWS INDICATE POLYNOMIAL GROWTH/DECAY

- e i RN AN . .

e —— —— ——— — .

12




asETSR

Our result is approximate, whereas Arnold (5) and Shoshaitshvili (6)
show there exist transformations which eliminate the higher terms.
The construction in appendix A is useful, however, in that it gives
v explicit ways of calculating the y and B(a) . When a = oy
B(ac) = 0. The phase space R" is now decomposed into a direct

product

(A
Wy £ W, €M (2.22)

where WO is the manifold corresponding to Ao and we : W

are the expanding and contracting sub-spaces respectively.

(o]

The assumption that all eigenvalues of B were real affected the
form of the canonical equations. Complex eigenvalues are explicitly

treated in the Hopf case.

C. Critical Type

In this case, aeRz. The eigenvalues of B are still
denoted by A(a). We assume:

1) When «

I

o there is one zero eigenvalue, A

c G

k negative eingenvalues and n - k - 1 positive eigenvalues.
o All eigenvalues are real.

2) There are enough eigenvectors. Let 2 be the

. eigenvector belonging to Ao(a) . Then from (2.17), we obtain

2 = bly(2), a) , (2.23)




The critical type steady state is characterized by

b(o; Gc) b bz(or uc) = bzz(ol ac) = 0
A -~ (2.24)
bzzz(O, ac) #0
. In appendix A, we show that the canonical dynamics are
- : 2
y' = Ayt o+ 0y
el

= +(2%) - 8 ()2 - Byl + 0(zh)

™~
|

In (2.25), B(a) 1is a regular function that vanishes when o = a,

~

The *+ sign in (2.25) corresponds to the sign of bzzz(o, ac).

Arnold and Shoshaitshvili state a theorem in which the higher order

terms are eliminated. As remarked above, the constructions in

appendix A are useful for applications. The decomposition of the

R

phase space R"™ is sketched in figure 4.

D. Hopf Type

In the Hopf case, aeR1 and some of the eigenvalues are complex.

When a = o one eigenvalue, xo(a) is a pure imaginary with

p |
da Rerpla) 70 - (2.26) 4

’: . ‘T

14




£ *)?””M
i
]

. ,>0
<« @9
" We (msidethe
eose)
t-
6‘2{120 Q.(O, PJ<O ‘
We We g

—>
=
ﬁ),‘

FIG. 4: DECOMPOSITION OF PHASE SPACE IN THE CRITICAL CASE.
DOUBLE ARROWS INDICATE EXPONENTIAL GROWTH/DECAY. SINGLE
ARROWS INDICATE POLYNOMIAL GROWTH/DECAY.
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Thus, as o crosses a,e a pair of eigenvalues closses from the

"left half plane into the right half plane.

Let x = rele. Fenichel (1975) (also see Arnold (1972)) has

8
3
&
b
&
¥

shown that the canonical dynamics are

r = :(blr3 - ler) (2.27)

D .
]

2
AZ + bzr + ner (2.28)

where Yy is

Bl
Yl‘ﬁRe A:(a) - ’

(o]

Az > 0 and bl,b2 # 0. The function n = n(a) is regular and

n(0) = 0.

16




E. Relaxation Rates

Given an initial displacement from the origin

YO = Vs wer ¥, 4] (2.25)
it is clear that the appropriate relaxation (or growth) rate of

the kth component (or mode) can be explicitly calculated by using

the canonical forms. The calculations reveal exponential growth

in W.» decay in W. and polynomial growth or decay in W0 (at
bifurcation points). Thus, we have a complete, albeit local,
deterministic theory for relaxation phenomena in the vicinity of

critical points.

i
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SECTION 3

STOCHASTIC THEORY OF RELAXATION:
FORMULATION AND ONE-DIMENSIONAL RESULTS

The deterministic theory of section 2 is approximate in
that it ignores fluctuations. Since the deterministic dynamics
vanish (to perhaps second order) at a steady state, the proper
theory of relaxation phenomena is a stochastic one. Our theory is

still phenomenological, but it may be possible to connect it to

underlying statistical physics.

3.1 STOCHASTIC KINETIC EQUATION AND DIFFUSION APPROXIMATION

We replace the deterministic kinetic equation (2.17) by

the Langevin equation:

. "~ / N ~ . ;
-t = bl(xT) + LE 0;(X) v (t/1) (3.1} |

4 , In (3.1), 1t 1is a small parameter relating the time scales of the

7 fluctuations and the deterministic dynamics, ¢ is a small parameter
characterizing the intensity of the fluctuations. The process

: ﬂfj is a zero mean, mixing process (for more exact assumptions,

see (9)). The field o%(x) is assumed to be known, or given by

some prescription.

The process Yy (S) in (3.1) has correlations. Hence, our

model is more reasonable than "white noise" models. We let




A f E[Qk(sﬁl(m] i (3.2)
0

AS Ty X oV, A diffusion process. If uo(x) is a bounded,

measurable function and
- u(x, U==EuM;&HIhO)=x}, (3.3)

then u(x, t) satisfies the backward equation

ij . :
_ €a i i
u, = 3 uij + (b” + €c )ui . {3.4)

In (3.4), subscripts indicate partial differential and repeated

id g
’

indices are summed from 1 to n. The coefficients a ¢ are
8% = oi(x)oi(x) [ykl + ylk] (3.5)
ct = vklai(x) -2 0] (x) (3.6) -
Bxl

In practice a(x) and c(x) cannot be calculated from first prin-
ciples, but some prescription must be given for their calculation

(@.g«, (10)}).

T ot P
L}

Let N Dbe a neighborhood of a stable steady state or, more
generally, a domain in R" . We set
\
i ui{x, t) =1 XEN
3
| aix, t) + 0 as distance from x to N » « 3 (3.7)

| | {o xq N

u(x, 0) =
1 XCN »




i

TR

Then, u(x, t) 1is the probability that ;(t) has entered N by
time t , given that ;(0) = X

For stochastic relaxation theory, we are interested in the
expected time to enter N , given ;(0) = X and that the process

enters N:

«@

T(x) = J[ tut(x, t) de. (3.8)
0

Then T(x) satisfies

ij : :
ca i i picicie
o Tij + (b” + €c )Ti u(x) (39
where
Bty tig wix, t) (3.10)

Namely, u(x) 1is the probability that the process eventually
enters N, given that x(0) = x. The boundary conditions appro-
priate to (3.9) are

T(x) =0 XEN
(3.11)

and a growth condition as distance (x, N)-=

3.2 EXACT SOLUTION AND CANONICAL FORMS

When xei} , equation (3.9) is an ordinary differential

equation




il

e R ——

a o
53 Ty + (B(x) + ()T, = ~U(x) (3.12)
A
Let N = {x} . Then the solution of (3.12) is
A '
X S s X
o - _ R bt+ec f = 2 b+ec -
Tix) = _[:chp[ e,[ = dy] > u(x) exp[ef = dy]dx ds

(313

Equation (3.13) has a rather conplicated asymptotic analysis.

Instead of doing an asymptotic analysis on (3.13), we return to
(3.12) and set, for convenience az2, G(x)E 1, and c=0. We will
analyze (3.12) and obtain certain special functions. These functions
will be generalized in section 4, for the solution of multi-dimen-
sional problems. Our analysis is based on matched asymptotic
expansions (e.g., (11)).

Away from the zeros of b(x), (3.12) becomes

b(x)Tx == {3:.14)

This is the "outer" equation.
Near zeros of b(x), (3.14) breaks down. We need to
stretch coordinates (3.12) to obtain the appropriate "inner"

equations. We shall analyze (3.12) by using the canonical

form of b(x).

21
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A. Normal Case

In the normal case, b(x) = +x, with (+) indicating that
the origin is an unstable steady state, (-) indicating a stable
steady state. Introducing z = x//e , (3.12) becomes
Py, t sz = =L {3.15)

B. Marginal Case

~

In the marginal case, the canonical dynamics are b(x) = t(xz)- .

We introduce the stretched variables

1/3

7z = %/e S g = a/52/3

, so that (3.12) becomes

B fas )T, = i g2t 3 (3.16)

€. Critical Case

In the critical case, the canonical dynamics are b(x) =

+ x3 *+ 81 x+82 . We introduce stretched variables z = x/¢’ ,

% RS

81 = Byfe” s By = Byle and obtain the inner equation

3 ot %
Tzz y g o SRR - Blz * BZ)TZ = - 1/¢ {(31T)

D. Hopf Case

In the Hopf case, the canonical dynamics are b(x) = -x~ + BX .
3 =
We introduce the stretched variables z = x/e® , B = B/e:;s and

obtain the inner equation

T, + (-2 + Bz)T, = - 1/¢ (3.18)

22
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Equations (3.15-3.18) define certain incomplete special
functions. These special functions will be used in the next
section to construct asymptotic solutions of multi-dimensional

problems.

23




SECTION 4

i ; STOCHASTIC THEORY: ASYMPTOTIC RESULTS

When x¢R" nz2 , equation (3.9) will usually not have exact
solutions.Consequently, approximate techniques are required. The
methods used here are closely related to those in (10). The basic
idea is to generalize the one-dimensional inner solutions; we call
% the method a generalized ray method. Although the normal case does

not represent a "critical" point, we include it for completeness.

4.1 NORMAL CASE

We suppose that the origin is a simple steady state (figure 5)

b and that it is stable. We seek a solution of (3.9) in the form

T(x) = gIF(R/E) + hix)e® F (y//8) + k(x) . (4.1)
F‘ In equation (41.), F(z) is a special function satisfying
d—z—l“21=zgfz:-1 (4.2)
dz
t and ﬁhe functions {§(x), g(x), h(x), and k(x) are to be determined.
r; In order to completely analyze the problem, we assume that g, h, k

have expansions
g(x) = £ g"(x)e" h(x) = £ hx) e k(x) = £ kM(x)e" (4.3)

Consequently, the construction given here represents the first term

3 i ~ in the asymptotic solution of (3.9).

When derivatives are evaluated, (4.2) is used to replace

B ] F"(y//e) by /Je F'(y/Je) - 1. Then terms are collected according

to powers of ¢. We obtain:




Rl o

B L BN A 1o S et oy

-u(x)

ool i ij :
e * [by, + a2 bi¥yv] (g+hpF
+ F(blg))
(9 S | aij
+ ¢ (b k, + e wiwjg)
Bl atd i (4.4)
ij ij :
a a i,
bl i T e sl L L L
i
+ hc wiw]
The leading terms vanish if
i aij
b $ * S wiij =0 (4.5)
S
b g; = 0 (4.6)
i ai] -
b ki e on ¢i¢jg = ~u(x) (4.7)

First consider (4.5). Since b'(0) = 0 for all i, we set y(0) = 0,
in order to keep {(x) regular. Then (4.5) can be solved by the
method of characteristics. We note that the transformation

¢ = %wz converts (4.5) to

in =0, (4.8)

which is a Hamilton-Jacobi equation (see also (12)). Then, e can

'solve the Hamilton-Jacobi equation in terms of characteristics:

Ly OH '3 -9H ropene) e
X = = pT = == $ = = a -“p,p. (4.9)
api axl . 2 2=




!
3
i |
] |
‘ |
|
» %(0)* X
i;
| |

(a) |

x> !

T(x):=0 |'f }‘:

/ e

V¥~ |

J*\R. Z' %

&\ >

A (b

FIG. 5: STOCHASTIC RELAXATION PROBLEMS IN THE NORMAL CASE. |
(a) THE RELAXATION PROBLEM i
(b) THE FIRST EXIT PROBLEM |
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where

H(x, p) = b'p, + 25— p;P; (4.10)

Starting at the origin, the phase plane is covered with trajectories,
called rays, along which ¢y (or %) is known. Thus, ¢ at any point

X 1s known.

Equation (4.3) indicates that g is constant on deterministic
trajectories. Since all trajectories intersect at the origin, g

must have the same value on all trajectories. At the origin, (4.7)

becomes
aij -
o wi\pjg = =Swe0k ==L (4.11)
Thus
o = l—-:l__ . (4.12)
E_i R
# )

We set Kk(0) = 0 as initial data for (4.7).

If we set F(0) = F'(0) = 0 as initial conditions in (4.2),

then the leading term of the asymptotic solution satifies T(0) = 0.
The O(SI/ZF') term in (4.4) vanishes if
bl o Lalle gy ¢ €0
§ T ey i%5 7 v 4
aij 3 i
¥ wiwjh - gcy; + he p;v =0 (4.13)
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At the origin b'(0) = Y(0) = 0, so that (4.13) becomes

ey it ‘—aij
) ‘
%_widj 1

h (0) kpi.q + Ciqlig (4.14)

J

Equation (4.13) can be solved by the method of characteristics, with
initial data given by (4.14).

Thus, we have completely constructed the leading term of the
asymptotic solution of (3.9).

As a by-product of our method, we are able to approximately solve
the famous Kolmogorov first exit problem, recently considered by
Matkowoky and Schuss (13) using matched asymptotic expansions. This
problem is the following: suppose that the origin is surrounded by a
domain D , with boundary ©9D. Find the expected time that the
process takes to hit the boundary (i.e. the mean exit time from D)

(Fig. S5b) from x.
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We follow the arguments leading to equations (4.1 - 4.11),
except that the initial data for F,F' and k(x) change. We set

k(x) 0 on oD. We distinguish two cases:

il

i) The boundary oD is a contour of § (or §) say, y=y, ©on
oD. Then we set
F(yy/ve) = F' (yp/e) = 0 (4.15)
when solving (4.2). Then T = 0 on D.
ii) The boundary oD is not a contour of . Let y; and Vit
denote the maximum and minimum values of §y on oD. Then T § 0 on
oD, but it can be shown that on oD
IT|sen b fipg) ] (a.16)
+ exponentially small terms.
Hence, if lym(wI/(q;II)l is small, then |T(x)| will be small on the
boundary.
4.2 MARGINAL CASE
In some senses, the marginal case has the least interesting ;

dynamics. The dynamical problem we consider here is sketched on :
figure 6. When the deterministic system has two nodes (Q., Q)

and one saddle (S), even if the process starts near Qo' 1t will

eventually reach Q- due to the proximity of QO and S. The

.proper question in the stochastic theory involves the time to cross

some given curve R. We note that such a time is infinite in the

deterministic case, if the phase point starts on or above S.
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We seek a solution of (3.9) of the form

T(x) = g(0B(y/e3,8/623,1/3,y) (4.17)

1/3

+ hix)e? 38 (8/6%3,1/6¥ 2 v, ) & k)

In (4.17), Bz, a,xl,kz) satisfies

dB

L, 2
e A R ) 3z

1 2
and g(x), h(x), k(x), y(x) and the parameters &,Y, are to be deter-

mined. We proceed as in Section 4.1. Instead of equations (4.5-7)

we obtain

Bt St P ol g S (4.19)
¥ ¢i¢j ] Po .
bigi =0 (4.20)
& aij -
b k.l Bitr o wiwjg(l + yzw) = -u(x) {4.21)
¥ k
In (4.17', we have set B = IB, e .

k
We set w2 = BO at Q0 and at S.In particular w(Qo) = + JEE

and (S ) = —JEE. The value of By can be determined by an itera-

(0)

tive procedure (10). We pick an initial value of 50 = BO and

solve (4.19) by the method of characteristics, starting at QO’ where

y = 530). Some rays will approach S . As a ray approaches S ,

y should approach -J%éo). If it does not, then the séO) must be

replaced by a second iterate Bél). The method of false position

SEMER (4.18)
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RELAXATION PROBLEMS IN THE MARGINAL CASE
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can be used to calculate iterates of This procedure can be re-

50-
.peated until 80 is known to any desired accuracy. (In (10), we
present a discussion of this calculation in more detail.)

Equation (4.20) indicates that g 1is a constant. At Q and

Ql' which we denote generically by P , we have, from (4.21):
ol g
- e M g(l + v, p(P)) = -u(P) (4.23)
I le
These are two equations for the unknowns g and Yo We set k = 0

on R and assume that R is a level curve of Y, with Y = wR on R.

Then we set

3

B(wR/el/3.B.l/el/3,Y2) = Bl(wR/sl/3.8,l/cl/ +¥ad = 8 (4.21)

(o s B O 2

il

With these choices, T (x)
At the bifurcation point n = 0 (the marginal bifurcation)
Qo and Q1 coalesce. Then BO = 0, and it can be shown that

Yo = 0 (10). At the saddle-node QO/Ql' equation (4.23) still pro-

I

vides one equation for g:

PR L L2 . (4.24)
a'J
3 %Yy
Elsewhere, we have given proofs that all the construction are regu-
lar at the bifurcation point ((10), appendices D, E).

In section 5, we consider an example of a chemical system ex-

hibiting the marginal bifurcation.

30

aadl




" B0
B279
L (mside evsp)

en" £,-0

L mb
e

xl

p,< 0

B,<0

FIG. 7: RELAXATION PROBLEMS IN THE CRITICAL CASE.
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4.3 CRITICAL CASE

We now consider a system with three steady states, PO’ Pl’ and
P2 when Aoy > 0. When a; = 0y = 0 the three steady states
coalesce into a critical type steady state. When ayra,y < 0 there is
only one real steady state; it is assumed to be stable. If
sy > 0, we surround P, by a domain N and pose the following
stochastic relaxation problem: what is the expected time to enter N,
given the initial position. Clearly there is an analogous problem
for a neighborhood N of PO. When there is only one steady state
P, we surround P by N. We note that if N shrinks to P p
then we have the expected time to "reach" P, conditioned on initial

position. We also note that T(x) = 0 if XxXEN.

We seek a solution of (3.9) in the form

T(x) = gowe/t 0zl 2, 876341762y 764 )
# hire Y Many/el M ope V2 gre 8 1y R oy a200) L ARES)
+ k(x)
where Q(z'a’B'Yl'Yz’YB) satisfies
2
2 4.26
g;% = % (z3 - az - B) g% = %5 + ¥,z + Y32 ( )

The (+) sign in (4.26) corresponds to the steady state P being
stable, the (-) sign to it being unstable. We consider the case in
which P is stable.

Instead of (4.5), we obtain

pi all . = 4.27
wi+_'_2—wle(w-aw_8)’0' (- )
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When there are three steady states, o and B are determined by a

procedure analogous to the one in section 4.2. Namely, at the steady

states we set

3 (

e e e
The method of characteristics is then used to determine o and B
by an iterative procedure. When the three steady states coalesce
a = B = 0. When there is one real and two imaginary steady states,
then o, B < 0 and can be determined by power series. Such series
are constructed elsewhere (10).

Instead of (4.7), we obtain

i 4

B -
By + 25 ¥y 9 -1ty itygy®) = -Gx)

At the steady states, we obtain

aij 2' =
T3 Gaaritaitygy ) = el
When there are three real steady states, we obtain three equations
for q, Ypr and y;. When two steady states coalesce, Y3 = 0. We
still have two equations for g and Yy Finally, when all three

coalesce, LR, S 0 and we are left with one equation for g.

We obtain an equation for h(x) that is analogous to (4.13),
and is treated in an analogous fashion. The initial values of Q

and Q' in (4.26) are determined so that T(x) = 0 if XEON.

32

(4.28)

(4.29)

(4.30)




e ey :
e e T

P
3

4.4 HOPF CASE

4 The Hopf type dynamical system is treated in an identical

fashion to the marginal and critical type systems. We seek a solu-

tion of (3.9) in the form

T(x) = gtor/e/?,8eM2,17eY2 ,y, , 1/4)
% 1/4H'(w/el/4,l/€l/2,B/El/z,Y2/51/4)h(X) (4.31) 1
+ k(x)
where H(Z’B'Yl’YZ) satisfies
3%% =+ (23 - Bz) %% e W £ (4.32)

The (+) sign corresponds to a stable limit cycle and unstable focus,
the (-) sign corresponds to an unstable limit cycle and stable focus.

The analysis proceeds exactly as in section 4.2,3.
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SECTION 5

SUBSTRATE INHIBITED REACTIONS:
A MARGINAL TYPE STEADY STATE

The following equations model a substrate inhibited chemical

reaction in an open reactor (10,14):

; g N
xl = T - 1069979 xT + .25901-— XX
L. S+ +13(x ) 1+10x"x
: 1.2
Xz = .09'% ’
1+10x7x

2 f 7 : :
where x~ and x~ are dimensionless "concentration" variables. The

steady state (.4359, 2.065) is a saddle node, it is a marginal type

steady state. The steady state (1.46, .52) is a stable node. The

phase portrait is shown in figure 8, along with a first exit boun-

dary. The theory on section 4.2 applies. We wish to calculate the

expected time to hit R, conditioned on initial position. Using the

(5. 1)

birth and death approach to chemical kinetics (15), €a can be modeled

as @509 K
e
s o
(95 SN S
¥ 3 l+10xlx2
ea =
]
X X 2
(Aatps )X
1+10x %2 2 s
where
5 8 I
“‘1’““1"xl o l'ix 1 3% S .069979x + .25901 + __§“§T‘§
it bt . 1+10x " x
g2
(kzpz)xz = .09 + _25_311_2_
1+10x"x
34
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DETERMINISTIC PHASE PORTRAIT AT THE MARGINAL BIFURCATION.
THE BOUNDARY R WAS USED IN THE CALCULATION OF THE MEAN

EXIT TIME.
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The parameter ¢ characterizes the intensity of fluctuation.

In table I, we compare the theory of section 4 with Monte Carlo

experiments for e = .01l.




TABLE 1

Comparison of the Theory and Monte Carlo Experiments

in the Marginal Bifurcation

Test Point T(x) Theory T(x) Experiment (# Trials)

(.42, 2.06) 60.3 56.4 (950)

¢-38; 2.36) 104.1 91.2 (400)

€+20, 2.0) 66.1 62.4 (2000)

(=3 1.9) 37.7 35.0 (1550)

' (.16, 2.4) 119.6 103.5 (400)

(15 2:.2) 36.1 31.4 (1750)

(.6, 2.4) 74.9 68.2 (800)




SECTION 6

KINETIC MODEL OF THE FERROMAGNET

We shall give an analysis of the mean field ferromagnet,
similar to that of Griffiths et. al. (2). The problem is one
dimensional, so that the full theory of section 4 is not needed.
However, this application illustrates many of the ideas that run
through an analysis.

Consider N spins, with o, = #*1, 1in a magnetic field H.

5

Let J be a coupling constant. The Hamiltoman is

, S ol 3 i
] e T Zoicj LH Zci L2 {(6.1)
1<n
We let
n=1i(N+ Zo,) (6.2)
2 VAL .
denote the number of spins "pointing up." Then (6.1) becomes
~Jign ~ ®)*
H =z ¢(n) = o - uH(2n - N) (6.3)

- We take a mean field approach and assume that the number of spins
pointing up is really a statistical variable, %(t). The statistical

- behavior of n(t) is described by transition probabilities:

pr{R(r + 8T)-n(1) = 1|n(1) = vn} (6.4)

i wB=n exp [Z% (¢(n +1) - ¢(n0] §t + o(81)
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St ¢ 8xy-nle) = =1|8(x) = n}

i
2|5

exp =8 ¢(n - 1) - &(n) St '+ ofsT)
2

where B = l/kBT.

sitions is o(éT1).

ment in (2).

Ykl o Z;i _2n = N
345 8% = ;(r + 81) - x(r), then (6.4,5) become
Pr {6; = 2/N|%(1) = x} s ; X exp {-B(—xJ - % - Hu}}ér
+ o(d1)
Pr <6§ = -2/N Q(T) = x} = - ; - exp {—B(XJ - % + Hu)} St
+ o(871)

We set o = JB, & = BuH and introduce a macroscopic "physical"

time defined by
= L
R

Thus, we construct drift and diffusion coefficients

.

(1L - x) exp [ux + % + 6] - (1 + x) exp [-ax +

—

_ lim

b(x) = 5t+0 Bt

E{d%l%(t)

Zle

37

We follow (2) and introduce a "continuous" variable

(6.

We assume that the probability of all other tran-

In deriving (6.4,5), we have restated the argu-

(6

(6.

(6.

(6.

]

(6.

5)

.6)

7)

8)

.9)

10)

11)




()

w<d
(6)
Stably 5
(‘})wmﬁlﬁ\') |
sheble (knghi ead Hoam,)
4 o |
FIGURE 9: MEAN FIELD FERROMAGNET
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and
_ lim 1 V2N K
a(x) = si.0 3FEE {(Gx) [x(t) = x} (6.12)
- {(1 - x) exp (ax + = + &) + (L + x) exp(-ax + 2 - §)
- N P N P N
(6.13)
: Thus, the average value of x(t) evolves according to
x = b(x,a,8) = 2e°‘/N {sinh(ax +8) - x cosh (ax +6)} p (6.14)

subject to -1<x<l. The steady states and true (physical) equilibrium

are solutions of b(x,a,d) 0. Therefore, one obtains

X = tanh (ax + §) (6.15)

Equation (6.15) is usually obtained by a statistical thermodynamics
argument (e.g. (16), pg. 101).

This agreement adds support to our statistical approach. 1In
many respects, the approach used here is preferable to the standard
approach. Not only does the stochastic approach yield the equili-
brium solution, it gives dynamics and the steady states. As is well

. known, equation (6.15) may have 1, 2, or 3 solutions, depending upon
the values of a and &§. 1In figures 9a, b, we illustrate the

- graphical solution of (6.15) for zero field (8§ = 0). When 6 = 0,

X and x, are both thermodynamically, and kinetically, stable.

0
However,. for &6 # 0, one of Xgr Xy "becomes kinetically stable

38
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(thermodynamically metastable) while the other is the true thermo- !
‘dynamic (and kinetic) equilibrium (Figure 9c¢). The kinetic condi-

tion of criticality is that, when 6 = 0

b'(x,) = b"(x,) =0 (6.16) |

3) )
- We easily obtain a = 1 as the critical value of a. This defines
the critical temperature.

Now consider § # 0, with X metastable and X, stable.

The expected time to reach Xy given that Q(O) = x satisfies
-
-1 = 2Txx * BT (6.17)
T(x,) = 0 e T (x) < (6.18)
2 X+ =~ i

with a(x) and b(x) given by (6.13) and (6.11). Define the re-

laxation rate from the metastable to stable state by

! o 1
k—",r_(x_o)— . (6-19)

We can calculate the relaxation rate k for all values of N. The

method of Griffiths et.al. (2) broke down for large N. The result
- given here will be valid for all values of N. Our result thus
extends their analysis. It can be shown that the two results are

. equivalent for small N.
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SECTION 7

RELAXATION OF A CRITICAL HARMONIC OSCILLATOR

The application in section 6 did not use the theory of sec-

tion 4, but the one in this section does. We consider a Duffing

oscillator
dx _
dt
mdv _ 3 ey day
3t - (Cknx - a(x”) YV + Jea 3¢

We assume that k(nc) = 0 for some critical value of n and that
k(n)20 for all n. The mean motion of the oscillator is given by
X = v

& -kx-ax3-xv
n

When a>0 , the origin is the only real steady state. The matrix

0 1
i
B=(bl)l -
0,0
: -k 23
m m

has eigenvalues and eigenvectors

when k = 0 , the origin is a critical type steady state. Accord-

ing to the fluctuation dissipation theorem, for this problem

a = 2kTyp , where

(7.1}

T« 2)

(7.3}

(7.4)

{(7:5)

(7.6)




[

p =_/. E(Y(S)y(0))ds 7.7
0

Let T(x,v) be the expected time that the process takes to enter a
; ' small ellipse around the origin, given that X(0) = x, ¥(0) = v.

Then, for arbitrary k ,

L
2 vV X

T (7.8}
m i #
We introduce scaled variables by
E
vagfl vt p=B g t = ¢
o Yo Yo
(7.9)
E_ m k'y
0 0
X =q|—5— 3 Yy = yon(x') k =
Yo VEqm
2 3102
a =y 19* a’
0 Ey
Where Eo is some reference energy, such that ka<<EO. Defining
’.
€ = ka/E0 , we obtain (for k(n) = 0)
F = A G e E T~ (T (7.10)
In the sequel, we drop the primes. Since the origin is a critical

type steady state, the theory of section 4 applies.

"The leading term in the asymptotic solution of (7.10) is

1
T(x) ~q® Q(y (x,v)/el/440,0, 1/c¢172,0,0)

£
g
<
&

&
7

>
¢

v
L3

axV x) + 0(Y

e




Equations (4.27) and (4.29) become

3 2.3
iy =(oxi + nv)¢v by =0 {712

0 3 0 O a2
vkx =ifax " - 'qv)kv i R T -1 (7.13)

In order to keep | regular at (0,0), we set § = 0 there. 1In
order to solve (7.12) by the method of characteristics, we need in-

itial data for Wx and ¢v. If (7.12) is differentiated with re-

spect to v and evaluated at (0,0), we obtain

¥y — ¥y = 0 at (0,0) (7.14)

When (7.12) is differentiated three times with respect to x and
evaluated at (0,0), we obtain

V¥ = a/n (7.15)

Thus we obtain, at (0,0)
1

b = (am /3 vy = (al/?@“/S) (7.16)

Higher derivatives are evaluated in a similar fashion. Thus, we

can specify an ellipse around the origin:

N = {(x.v) : Yy (x,v) = 6} {71 2)
* We set Q(6/e1/4,0,0,1/€1/2,0 o0 ) - Q'(6/61/4,0,0,1/51/2,0,0) =0
when integrating (4.26). We also set k(x,V) = 0 if (x,V)&N.
" Et the origin, (7.13) becomes
0 2 2 3/5
g% = 2 = —725n/ : (7.18)
: W, ¢
{
42
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which determines the value of gO. Then, on deterministic trajec-

tories we have

0 Q.2
[ AR g ny
at Feig e

2

(7-19)

] ; with the initial data given above. Equation (7.12) can now be
solved by the method of characteristics, so that the leading term

in the asymptotic solution is known.
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Appendix : Classification of Two Dimensional Dynamical Systems.
The Normal Forms for Marginal and Critical Type De-
terministic Systems

In this appendix, we classify planar dynamical systems into
normal, marginal, or critical types. Our scheme is a generalization
of the work of Kubo et.al. (4). We use Segre's method (17) to
derive the local normal forms for the marginal and critical cases.

I. Normal Type Dynamical Systems

Let the dynamical system

% = b(x) %€R”

have a steady state at x = X4 Let A+ denote the eigenvalues of

(b%j) evaluated at Xq- The system (A.l) is of the normal type if

the real parts of )X+ are non-zero. The steady state is stable if
the real parts of )+ are negative.
According to the standard theory of differential equations (18)

there exists a change of variables x>y so that

5 2 2
Yq A+0 yl ayl + b yly2 + cy2
+
iR~ a 2 + b + ¢ .
Yy Y) 2Y2 2¥1Y) 2Y2

+ 0(y2)

The coefficients a; - ¢, are given in terms of the second deriva-

‘tives of b(x) evaluated at x

0

(A.1)




o

II. The Marginal Type Systems

The dynamical system

% = b(x,n) x€R®> neR (A.2)

is assumed to have the following behavior. (A.2) is assumed to have

three real steady states for m>0. We denote these by Qq (n) Qy(n)

P2'

Denote by B, the matrix (b%ﬁ) evaluated at Qy:Q, or P,. (k=0,1,2).

k
We assume

1) For all n,82 has two real negative eigenvalues
2) As nio0, the distance between Qo(n) and Ql(n) decreases.

When 1 = 0 the two points coalesce and annihilate each other

3) For n>0,BO has two real, negative eigenvalues which de-

pend upon m and B y has one real positive and one real negative

eigenvalue. When 1 =0 , B0 = Bl has one zero and real negative

eigenvalue. The eigenvector corresponding to the negative eigen-
value has positive slope.

We introduce as new coordinates the eigenvectors Yy Y, as

* new coordinates so that (A.2) becomes

Lo
]

1 Bl (y,m)

- 2 (Aa.2a)
y B (y,n)

=
L8]
1}

The system (A.2) is of the marginal type if the above condi-

tions hold and
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1
ob

29 0.0) = 0

oY,

2ol

9% (0,0) = a #o0.
oy}

When n 1is small, but non-zero, we translate the origin, so

that the system (A.2) is approximately given by

- = 2 ol
¥ =¢;n+ Cymy, +ay] + Syly2 + Sy,
+ 0 (Y3IT]2)

Yy

Il

Yy, + 0y,
In (A.4), X(n) is the non-zero eigenvalue of B(n) = (b%j(n))lxl-

The coefficient a 1is given by A.3b; the other coefficients are

also given in terms of the derivatives of b(x). We assume C1I 0

Let y' = =y. Then (A.4) becomes

0|

3 2 2 Fi 2
Yl = Cln 7+ CZTlYl & Yl o+ bYlyz + CY2 + 0(y an’)

Y

2
where 8 = 8/a .
Introduce new coordinates by
2, = yY,tsy,y +tY2+uY2+WY ntry
1 B b Lo Bl T - bl 43 2"

+0 (n2,y3, wd

N
]

2
g " Y, * 0(m,y™)

— AR,

(A. 3)

(A.4)




e ]

then

]
i

N3
it

e o 4 .2

L} - 1 ] '
y R RN, RE N Y ARE T

'+2uy2yé + WYiﬂ + ryén

+ O(nyy',yzy')

Using (A.5) in (A.7) yields

i

Z . XOZZ

+ O(n,Zz)

2
' =
Z1 cyn + yl(czn + 2tc1n) + Y]

+ Ylyz(b
+ yg(Zux

We choose

= 2
t = 53; G
\J:lg
2\
2
and note that -
' =
Z2 AOZZ +10
2
Lo
Zl Zl

‘where 8(n) = -c n.

we desire. It is a

- sko) * yz(rnx + scyn)

+ o)+ 0y, 2.0

-sc
a5 S
0
2 3 ;
Zl + 0(y”). Thus equation (A.8) becomes
(T]lzz)

=SBl * 0(Z3.n22,n2)

Equation (A.9) is the local normal form which

weaker result than that of Arnol'd (5) or

Shoshaitshvili (6) who actually eliminate the higher order terms.
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III. Critical Type Systems

We now consider a dynamical system depending upon two para-

meters

% = b(x,m,8) x€R? 1+ 6€R (A.

We make the following assumptions:

1) For some combinations of 1 and § , equation (A.10) has
three steady states Po(n,é), Pl(n,é) and Pz(n,c). When the
three points are distinct, we assume that PO and P2 are stable
nodes and that Pl is a saddle point.

2) As n,86 vary, two of the points may coalesce into a point
of neutral stability (i.e., one eigenvalue of the linearized equa-
tions is zero). This situation is equivalent to a marginal type
dynamical system.

3) As 1,6~0 from above, the three steady states approach each

other and coalesce when n = § = 0. Let B = (b}j) evaluated at
Pl’ When 1,6>0 , we assume that B has one real positive and one

real negative eigenvalue. When 1 =6 = 0 , B has one real nega-
tive and one zero eigenvalue. When 1,6<0 , B has two real nega-

tive eigenvalues.

We denote by yl(n,b), yz(n,b) the eigenvectors of B,

The eigenvectors y,ry, are introduced as new coordinates so

that (A.10) becomes

10)

SR
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. 1
yl =5 (Y1T116)
(A.10a)
¥, = B%(y,m,0)
The system A.l0a is of the critical type if
g : a) at n =6 =0, B has one zero eigenvalue
b) the second derivatives
2 7 2
l é‘% ’ §_§T_— ’ é—% vanish
3y Y19Y, ay
1 2
| (0,0,) (A.11)
when n=5% =0
c) 2
3°b
T B
oYy
The assumption on A.10b can actually be weakened slightly: we only
need to require that 623 vanish, the other second derivatives
ovy
need not vanish. However, assumption A.l0b does not cause any loss
of generality and simplifies the analysis considerably.
In terms of the y coordinates, for small 1,5 the system
(A.10) takes the form
5 2
¥, = Anedly, + 0(y", (n + 8)y)
= ¥, =S n+ T8+ y (En+ C,0) (A.12)
v ' SVt T8 .y B eD
, PRV f R L




+¥3(En + € 48) + ay) + Byjy,

(A.12)

+ Byyys + Ay + oyt (n? + sy, cont'd
fmists 6)y3)
Letting ¥' = 1 § S = g/a and §;, = ¢ + c,.6 we have
9 a "’ i 2i-1" 7 Cj4
' 2
Yy = Ag¥y * 0(y",(n + 8)y)
Yo" 1y & 17 * v3Yf t oYy,
B (A.13)
2 3 2
+ yg¥, + y; + byyv,
2
+ cY Y, + dyg
+ 0(y4,(n2 + 89y,
(n+ 8)y)
We now introduce new variables by
2
ZZ s y2 + 0(y I(T] + 8)y)
2. =y, 4+ 8 2l Yy, +u -
1 1 1Yy 1, ¥, 173
‘ + 5,6y + t by.y, + u,by- (A.14)
21 dersedes'd il z
3 2 2
F TRy T NaR Y, T Welydy
+wgys + oyt (nf + 6Py )
Without loss of generality, we have not included terms 0(y2) in
the definition of Zy- This follows from assumption A.10b.
A-7
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From A.14, we have

Y2+0(YY l(T]+ G)Y)
= yi + ZSlnylyi + t,nylyé
L] L
*tonyyy, +2u,my,y, + 25,y v, 6
] 1] 1]
+ tzé(yly2 + Ylyz) * 2u26y2y2
+ 3w yiy!l o+ ow (yly v, + vyl
Sl S0 7 -Shdaibl Ll Sl Jrec2

. 2 :
+wyly v, + 2yY,Y))

2
+ 3wyoY,

7. 2
+ 0(y3y',n ¥ .6 %)

Using (A.13) in (A.15) yields (with A = ko)

+ 022, 2

AL2Z
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2
+ yl(Y3 + 3wlyl)

+

ylyz(y4 R+t 00 4w 2xw3)

+ yg(y5 + 2ulnx i 2u26x + w3x1)
+y3
+ yi(b + wzx + wzx + wzyz)

A-8

(A.15)

(A.16)




+ ylyg(c + 2w3x + w3 y2)
3

: oyt (2 + D)y.yin + 8)

We choose

Wtk ¥ Mol =

tln + e G =

2 A
=
R
1 3Yl
Noting that yi = Zi o+ O(nyj:nzyz) and
that vy = 7 + 0¢( 222) egn (A.16)
11 1Y1 n ’ :
becomes
2 = N Z., + O(Z2 Z)
2 072 &l

2] = y; + o2, + 23 + 0zt (% + 6%,

(n+ 8)2°),

which is the desired normal form.
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